Summary

0 AT RISK

0 CARRIER

170 CLEAR

TAP ABOVE OR SCROLL DOWN TO SEE MORE

Go to VET REPORT to easily share this information with your veterinarian.
/vetreport/

Go to OFA SUBMISSION REPORT to easily submit this information to the OFA.
/members/results/ofa-report

Clinical traits

These genetic traits are valuable to your veterinarian and can inform the clinical decisions and diagnoses they make.
Alanine Aminotransferase Activity result: Low Normal

Known to be highly expressed in liver cells, activity levels of alanine aminotransferase, or ALT, is a common value on most blood chemistry panels and is known to be a se...

Ava has one copy of a mutation associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Ava has this ge... (/members/results/condition/000100)

Not At Risk

Good news! Ava did not test positive for any of the genetic diseases that Embark screens for. Read on to learn more about the conditions we test for, but rest assured that Ava does not have the mutations known to cause them.

It is still important to let your veterinarian know these results because they could help guide Ava’s diagnosis and treatment if she gets sick in the future. Many other diseases caused by environmental factors or undiscovered genetic variants can cause symptoms similar to diseases we test for. By ruling out these mutations, your veterinarian will be able to find the true cause more quickly. Your veterinarian will also know they can safely prescribe medications some dogs are sensitive to.
Not A Carrier

Good news! Ava is not a carrier for any of the genetic diseases that Embark tests for.

Common Conditions

Good news! Ava tested clear for 10 genetic conditions that are common in her breed.

Condition List

MDR1 Drug Sensitivity
(MDR1)

Clinical

Sensitivity to certain classes of drugs, notably the parasiticide ivermectin, as well as certain gastroprotectant and anti-cancer medications, occurs in dogs with mutatio...

 Factor VIII Deficiency, Hemophilia A
(F8 Exon 11, Shepherd Variant 1)
Coagulopathies represent a broad category of diseases that affect blood clotting, which can lead to symptoms such as easy bruising or bleeding. Dogs with coagulopathies a...

Factor VIII Deficiency, Hemophilia A
(F8 Exon 1, Shepherd Variant 2)
BLOOD

Coagulopathies represent a broad category of diseases that affect blood clotting, which can lead to symptoms such as easy bruising or bleeding. Dogs with coagulopathies a...

Canine Leukocyte Adhesion Deficiency Type III (LAD3)
(FERMT3)
BLOOD

A rare disorder of white blood cells, this causes increased susceptibility to infections and bleeding tendencies. Affected dogs present with a history of persistent skin ...

Achromatopsia
(CNGA3 Exon 7 German Shepherd Variant)
EYES

This is a progressive, nonpainful disorder of the retina that affects color vision and light perception. Cone cells not only register color, they allow the dog to adjust ...
X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia
(EDA Intron 8)

MULTISYSTEM

This developmental condition can cause a scanty haircoat, malformed teeth, and few or absent sweat glands. Because dogs only have sweat glands on their paw pads, they are... (/members/results/condition/060200)

Renal Cystadenocarcinoma and Nodular Dermatofibrosis (RCND)
(FLCN Exon 7)

MULTISYSTEM

A multiorgan syndrome best described in the German Shepherd Dog, affected dogs display thick skin nodules and signs of kidney disease, and should be evaluated by a veterinari... (/members/results/condition/060300)

Mucopolysaccharidosis Type VII, Sly Syndrome
(GUSB Exon 3)

MULTISYSTEM

A type of lysosomal storage disease, this can cause skeletal abnormalities, growth retardation, and gait abnormalities, and can require close monitoring and special measu... (/members/results/condition/061001)

Degenerative Myelopathy
(SOD1A)
BRAIN AND SPINAL CORD

A disease of mature dogs, this is a progressive degenerative disorder of the spinal cord that can cause muscle wasting and gait abnormalities. Affected dogs do not usuall...
(/members/results/condition/090400)

- **Malignant Hyperthermia (RYR1)**

 METABOLIC

 This condition only manifests if affected dogs are treated with certain inhalant anesthetics, and can cause uncontrollable muscle contractions and a dangerous increase in...
 (/members/results/condition/120200)

- **Other Conditions: Clear of 160** (/members/results/healthfull)

 Ava is clear of 160 other genetic diseases that Embark tests for. Click here to see them all!
AVA

Genetic Vet Report by embark
embarkvet.com

Test Date: December 2nd, 2018

Customer-supplied information

Owner Name: French's German Shepherds
Dog Name: Ava
Sex: Female
Date of birth: 05/18/17 (Estimated)

Breed type: purebred
Breed: German Shepherd
Breed registration: AKC DN49707408
Microchip: n/a

Genetic summary

Genetic breed identification:
German Shepherd Dog

Predicted adult weight: 67 lbs
Calculated from 17 size genes.

Genetic age: 22 human years
Human equivalent age based on size and other factors.

Clinical Traits
These clinical genetic traits can inform clinical decisions and diagnoses. These traits do not predict a disease state or increased risk for disease. We currently assess one clinical trait: Alanine Aminotransferase Activity.

Alanine Aminotransferase Activity result: Low Normal

Ava has one copy of a mutation associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Ava has this genotype, as ALT is often used as an indicator of liver health and Ava is likely to have a lower than average resting ALT activity. As such, an increase in Ava’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

More information on Alanine Aminotransferase Activity:
Known to be highly expressed in liver cells, activity levels of alanine aminotransferase, or ALT, is a common value on most blood chemistry panels and is known to be a sensitive measure of liver health. Dogs with two ancestral G alleles show "normal" activity. Dogs that have one or two copies of the derived A allele may have lower resting levels of ALT activity, known as "low normal". If your dog's result is "low normal" then when a blood chemistry panel is being interpreted the values that you and your veterinarian consider "normal" may need to be adjusted. Please note that neither a "normal" nor a "low normal" result for this predicts a disease state or increased risk for liver disease. Moreover, this mutation does not associate with increased levels of ALT: If your dog has high ALT levels, please consult your veterinarian.

Health Report

How to interpret these results:

AT RISK status: Testing positive (AT RISK) is predictive of your dog being affected by this condition, but it is not a final diagnosis nor does it predict when symptoms may occur or the severity of a condition in your dog.
CARRIER status: This indicates the dog has inherited a recessive allele for a genetic trait or mutation. This is not enough to cause symptoms of the disease, but is important to bear in mind if the dog ever has offspring.

Conditions:

⚠️ Not AT RISK for any conditions tested.

と思いました Not a CARRIER for any conditions tested.

All other health conditions tested

Ava tested CLEAR for all these conditions:

- MDR1 Drug Sensitivity (MDR1) (Chromosome 14)
- P2Y12 Receptor Platelet Disorder (P2RY12) (Chromosome 23)
- Factor IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant) (Chromosome X)
- Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant) (Chromosome X)
- Factor VII Deficiency (F7 Exon 5) (Chromosome 22)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant) (Chromosome X)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 11, Shepherd Variant 1) (Chromosome X)
- Factor VIII Deficiency, Hemophilia A (F8 Exon 1, Shepherd Variant 2) (Chromosome X)
- Thrombopathia (RASGRP2 Exon 5, Basset Hound Variant) (Chromosome 18)
- Thrombopathia (RASGRP2 Exon 8) (Chromosome 18)
- Thrombopathia (RASGRP2 Exon 5, American Eskimo Dog Variant) (Chromosome 18)
- Von Willebrand Disease Type II (VWF Exon 28) (Chromosome 27)
- Von Willebrand Disease Type III (VWF Exon 4) (Chromosome 27)
- Von Willebrand Disease Type I (VWF) (Chromosome 27)
- Canine Leukocyte Adhesion Deficiency Type III (LAD3) (FERMT3) (Chromosome 18)
• Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cavalier King Charles Spaniel Variant) (Chromosome 24)
• Canine Elliptocytosis (SPTB Exon 30) (Chromosome 8)
• Cyclic Neutropenia, Gray Collie Syndrome (AP3B1 Exon 20) (Chromosome 31)
• Glanzmann’s Thrombasthenia Type I (ITGA2B Exon 12) (Chromosome 9)
• May–Hegglin Anomaly (MYH9) (Chromosome 10)
• Prekallikrein Deficiency (KLKB1 Exon 8) (Chromosome 16)
• Pyruvate Kinase Deficiency (PKLR Exon 5) (Chromosome 7)
• Pyruvate Kinase Deficiency (PKLR Exon 7 Labrador Variant) (Chromosome 7)
• Pyruvate Kinase Deficiency (PKLR Exon 7 Pug Variant) (Chromosome 7)
• Pyruvate Kinase Deficiency (PKLR Exon 7 Beagle Variant) (Chromosome 7)
• Pyruvate Kinase Deficiency (PKLR Exon 10) (Chromosome 7)
• Trapped Neutrophil Syndrome (VPS13B) (Chromosome 13)
• Ligneous Membranitis (PLG) (Chromosome 1)
• Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) (Chromosome 17)
• Complement 3 (C3) deficiency (C3) (Chromosome 20)
• Severe Combined Immunodeficiency (PRKDC) (Chromosome 29)
• Severe Combined Immunodeficiency (RAG1) (Chromosome 18)
• X-linked Severe Combined Immunodeficiency (IL2RG Variant 1) (Chromosome X)
• X-linked Severe Combined Immunodeficiency (IL2RG Variant 2) (Chromosome X)
• Progressive Retinal Atrophy - rcd1 Rod-cone dysplasia, rcd1 (PDE6B Exon 21 Irish Setter Variant) (Chromosome 3)
• Progressive Retinal Atrophy Rod-cone dysplasia, rcd1a (PDE6B Exon 21 Sloughi Variant) (Chromosome 3)
• Progressive Retinal Atrophy - rcd3 Rod-cone dysplasia, rcd3 (PDE6A) (Chromosome 4)
• Progressive Retinal Atrophy - CNGA (CNGA1 Exon 9) (Chromosome 13)
• Progressive Retinal Atrophy - prcd Progressive rod-cone degeneration (PRCD Exon 1) (Chromosome 9)
• Progressive Retinal Atrophy (CNGB1) (Chromosome 2)
• Progressive Retinal Atrophy (SAG) (Chromosome 25)
• Golden Retriever Progressive Retinal Atrophy 1 (SLC4A3) (Chromosome 37)
- Golden Retriever Progressive Retinal Atrophy 2 (TTC8) (Chromosome 8)
- Progressive Retinal Atrophy - crd1 (PDE6B) (Chromosome 3)
- Progressive Retinal Atrophy - crd2 (IQCB1) (Chromosome 33)
- Progressive Retinal Atrophy - crd4/cord1 (RPGRIPI) (Chromosome 15)
- Collie Eye Anomaly, Choroidal Hypoplasia (NHEJ1) (Chromosome 37)
- Achromatopsia (CNGB3 Exon 7 German Shepherd Variant) (Chromosome 10)
- Achromatopsia (CNGB3 Exon 7 Labrador Retriever Variant) (Chromosome 10)
- Autosomal Dominant Progressive Retinal Atrophy (RHO) (Chromosome 20)
- Canine Multifocal Retinopathy cmr1 (BEST1 Exon 2) (Chromosome 18)
- Canine Multifocal Retinopathy cmr2 (BEST1 Exon 5) (Chromosome 18)
- Canine Multifocal Retinopathy cmr3 (BEST1 Exon 10 Deletion) (Chromosome 18)
- Canine Multifocal Retinopathy cmr3 (BEST1 Exon 10 SNP) (Chromosome 18)
- Glaucoma Primary Open Angle Glaucoma (ADAMTS10 Exon 9) (Chromosome 20)
- Glaucoma Primary Open Angle Glaucoma (ADAMTS10 Exon 17) (Chromosome 20)
- Glaucoma Primary Open Angle Glaucoma (ADAMTS17 Exon 11) (Chromosome 3)
- Glaucoma Primary Open Angle Glaucoma (ADAMTS17 Exon 2) (Chromosome 3)
- Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9 Shepherd Variant) (Chromosome 5)
- Primary Lens Luxation (ADAMTS17) (Chromosome 3)
- Congenital stationary night blindness (RPE65) (Chromosome 6)
- Macular Corneal Dystrophy (MCD) (CHST6) (Chromosome 5)
- 2,8-Dihydroxyadenine (2,8-DHA) Urolithiasis (APRT) (Chromosome 5)
- Cystinuria Type I-A (SLC3A1) (Chromosome 10)
- Cystinuria Type II-A (SLC3A1) (Chromosome 10)
- Cystinuria Type I-A (SLC7A9) (Chromosome 1)
- Hyperuricosuria and Hyperuricemia or Urolithiasis (SLC2A9) (Chromosome 3)
- Polycystic Kidney Disease (PKD1) (Chromosome 6)
- Primary Hyperoxaluria (AGXT) (Chromosome 25)
- Protein Losing Nephropathy (NPHS1) (Chromosome 1)
- X-Linked Hereditary Nephropathy (Samoyed Variant 2) (COL4A5 Exon 35) (Chromosome X)
• Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy (COL4A4 Exon 3) (Chromosome 25)
• Primary Ciliary Dyskinesia (CCDC39 Exon 3) (Chromosome 34)
• Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis (CKCSID), Dry Eye Curly Coat Syndrome (FAM83H Exon 5) (Chromosome 13)
• X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia (EDA Intron 8) (Chromosome X)
• Renal Cystadenocarcinoma and Nodular Dermatofibrosis (RCND) (FLCN Exon 7) (Chromosome 5)
• Glycogen Storage Disease Type II, Pompe’s Disease (GAA) (Chromosome 9)
• Glycogen Storage Disease Type Ia, Von Gierke Disease (G6PC) (Chromosome 9)
• Glycogen Storage Disease Type IIIa (GSD IIIa) (AGL) (Chromosome 6)
• Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A (SGSH Exon 6 Variant 1) (Chromosome 9)
• Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A (SGSH Exon 6 Variant 2) (Chromosome 9)
• Mucopolysaccharidosis Type VII, Sly Syndrome (GUSB Exon 5) (Chromosome 6)
• Mucopolysaccharidosis Type VII, Sly Syndrome (GUSB Exon 3) (Chromosome 6)
• Glycogen storage disease Type VII, Phosphofructokinase deficiency (PFKM Exon 21) (Chromosome 27)
• Glycogen storage disease Type VII, Phosphofructokinase deficiency (PFKM Exon 8) (Chromosome 27)
• Lagotto Storage Disease (ATG4D) (Chromosome 20)
• Neuronal Ceroid Lipofuscinosis 1 (PPT1 Exon 8) (Chromosome 15)
• Neuronal Ceroid Lipofuscinosis 2 (TPP1 Exon 4) (Chromosome 21)
• Neuronal Ceroid Lipofuscinosis 1, Cerebellar Ataxia - NCL-A (ARSG Exon 2) (Chromosome 9)
• Neuronal Ceroid Lipofuscinosis 1 (CLN5 Exon 4 Variant 1) (Chromosome 22)
• Neuronal Ceroid Lipofuscinosis 6 (CLN6 Exon 7) (Chromosome 30)
• Neuronal Ceroid Lipofuscinosis 8 (CLN8 Exon 2) (Chromosome 37)
• Neuronal Ceroid Lipofuscinosis (MFS8) (Chromosome 19)
• Neuronal Ceroid Lipofuscinosis (CLN8) (Chromosome 37)
• Neuronal Ceroid Lipofuscinosis 10 (CTSD Exon 5) (Chromosome 18)
• Neuronal Ceroid Lipofuscinosis (CLN5 Exon 4 Variant 2) (Chromosome 22)
• Adult-Onset Neuronal Ceroid Lipofuscinosis (ATP13A2) (Chromosome 2)
• GM1 Gangliosidosis (GLB1 Exon 15 Shiba Inu Variant) (Chromosome 23)
• GM1 Gangliosidosis (GLB1 Exon 15 Alaskan Husky Variant) (Chromosome 23)
• GM1 Gangliosidosis (GLB1 Exon 2) (Chromosome 23)
• GM2 Gangliosidosis (HEXB, Poodle Variant) (Chromosome 2)
• GM2 Gangliosidosis (HEXA) (Chromosome 30)
• Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5) (Chromosome 8)
• Autosomal Recessive Amelogenesis Imperfecta (Italian Greyhound Variant) (Chromosome 13)
• Persistent Mullerian Duct Syndrome (AMHR2) (Chromosome 27)
• Deafness and Vestibular Syndrome of Dobermans (DVDob, DINGS) (Chromosome 21)
• Shar-Pei Autoinflammatory Disease (SPAID, Shar-Pei Fever) (MTBP) (Chromosome 13)
• Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3) (Chromosome 25)
• Alexander Disease (GFAP) (Chromosome 9)
• Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration (SPTBN2) (Chromosome 18)
• Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L) (Chromosome 8)
• Cerebellar Hypoplasia (VLDLR) (Chromosome 1)
• Spinocerebellar Ataxia, Late-Onset Ataxia (CAPN1) (Chromosome 18)
• Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) (Chromosome 38)
• Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2) (Chromosome 3)
• Degenerative Myelopathy (SOD1A) (Chromosome 31)
• Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2) (Chromosome 2)
• Hypomyelination and Tremors (FNIP2) (Chromosome 15)
• Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP) (Chromosome X)
• L-2-Hydroxyglutaricaciduria (L2HGDH) (Chromosome 0)
• Neonatal Encephalopathy with Seizures (NEWS) (ATF2) (Chromosome 36)
• Polyneuropathy, NDRG1 Greyhound Variant (NDRG1 Exon 15) (Chromosome 13)
• Polyneuropathy, NDRG1 Malamute Variant (NDRG1 Exon 4) (Chromosome 13)
• Narcolepsy (HCRTR2 Intron 6) (Chromosome 12)
• Progressive Neuronal Abiotrophy (Canine Multiple System Degeneration) (SERAC1 Exon 15) (Chromosome 1)
- Progressive Neuronal Abiotrophy (Canine Multiple System Degeneration) (SERAC1 Exon 4) (Chromosome 1)
- Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1) (Chromosome 19)
- Hereditary Sensory Autonomic Neuropathy (HSAN), Acral Mutilation Syndrome (GDNF-AS) (Chromosome 4)
- Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) (Chromosome 16)
- Spongy Degeneration with Cerebellar Ataxia 1 (SDCA1), SeSAME/EAST (KCNJ10) (Chromosome 38)
- Spongy Degeneration with Cerebellar Ataxia 2 (SDCA2) (ATP1B2) (Chromosome 5)
- Dilated Cardiomyopathy (PDK4) (Chromosome 14)
- Long QT Syndrome (KCNQ1) (Chromosome 18)
- Muscular Dystrophy Cavalier King Charles Spaniel Variant 1 (Chromosome X)
- Muscular Dystrophy Muscular Dystrophy (DMD Pembroke Welsh Corgi Variant) (Chromosome X)
- Muscular Dystrophy Muscular Dystrophy (DMD Golden Retriever Variant) (Chromosome X)
- Centronuclear Myopathy (PTPLA) (Chromosome 2)
- Exercise-Induced Collapse (DNM1) (Chromosome 9)
- Inherited Myopathy of Great Danes (BIN1) (Chromosome 19)
- Bully Whippet Syndrome (MSTN) (Chromosome 37)
- Myotonia Congenita (CLCN1 Exon 7) (Chromosome 16)
- Myotonia Congenita (CLCN1 Exon 23) (Chromosome 16)
- Myotubular Myopathy 1, X-linked Myotubular Myopathy (MTM1) (Chromosome X)
- Hypocatalasemia, Acatalasemia (CAT) (Chromosome 18)
- Pyruvate Dehydrogenase Deficiency (PDP1) (Chromosome 29)
- Malignant Hyperthermia (RYR1) (Chromosome 1)
- Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53) (Chromosome 2)
- Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8) (Chromosome 2)
- Congenital Myasthenic Syndrome (CHAT) (Chromosome 28)
- Congenital Myasthenic Syndrome (COLQ) (Chromosome 23)
- Episodic Falling Syndrome (BCAN) (Chromosome 7)
- Dystrophic Epidermolysis Bullosa (COL7A1) (Chromosome 20)
- Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1) (Chromosome 7)
- Ichthyosis, Epidermolytic Hyperkeratosis (KRT10) (Chromosome 9)
- Ichthyosis (PNPLA1) (Chromosome 12)
- Ichthyosis (SLC27A4) (Chromosome 9)
- Ichthyosis (NIPAL4) (Chromosome 4)
- Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita (KRT16) (Chromosome 9)
- Hereditary Footpad Hyperkeratosis (FAM83G) (Chromosome 5)
- Hereditary Nasal Parakeratosis (SUV39H2) (Chromosome 2)
- Musladin–Lueke Syndrome (ADAMTSL2) (Chromosome 9)
- Cleft Lip and/or Cleft Palate (ADAMTS20) (Chromosome 27)
- Hereditary Vitamin D-Resistant Rickets (VDR) (Chromosome 27)
- Oculoskeletal Dysplasia 1, Dwarfism–Retinal Dysplasia (COL9A3, Labrador Retriever) (Chromosome 24)
- Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2) (Chromosome 14)
- Osteogenesis Imperfecta, Brittle Bone Disease (SERPINH1) (Chromosome 21)
- Osteogenesis Imperfecta, Brittle Bone Disease (COL1A1) (Chromosome 9)
- Osteochondrodysplasia, Skeletal Dwarfism (SLC13A1) (Chromosome 14)
- Skeletal Dysplasia 2 (COL11A2) (Chromosome 12)
- Craniofacial Osteopathy (CMO) (SLC37A2) (Chromosome 5)

Information about Embark

Embark Veterinary is a canine consumer genetics company offering research-grade genetic tests to owners and breeders. Embark is a research partner of the Cornell University College of Veterinary Medicine and collaborates with scientists and registries to accelerate genetic research in canine health. The Embark test is the only comprehensive test on the market, providing results for over 160 genetic health conditions and accurate breed identification based on over 200,000 genetic markers. We strive to make it easy for customers and vets to understand, share and use their dog’s unique genetic profile to improve their pet’s health and happiness.